Genetic Algorithm Based Fuzzy Multi-Objective Approach to FACTS Devices Allocation in FARS Regional Electric Network

نویسندگان

  • M. Gitizadeh
  • M. Kalantar
چکیده

In this investigation, a novel approach is presented to nd the optimum locations and capacity of Flexible AC Transmission Systems (FACTS) devices in a power system using a fuzzy multi-objective function. Maximising the fuzzy satisfaction allows the optimization algorithm to simultaneously consider the multiple objectives of the network to obtain active power loss reduction; i.e., new FACTS devices cost reduction, robustifying the security margin against voltage collapse, network loadability enhancement and a voltage deviation reduction of the power system. A Genetic Algorithm (GA) optimization technique is then implemented to solve the fuzzy multi-objective problem. Operational and control constraints, as well as load constraints, are considered for optimum device allocation. Also, an estimated annual load pro le has been utilized in a Sequential Quadratic Programming (SQP) optimization sub-problem to nd the optimum location and capacity of FACTS devices, accurately. A Thyristor Controlled Series Compensator (TCSC) and a Static Var Compensator (SVC) are utilized as series and shunt FACTS devices in this study. The Fars regional electric network is selected as a practical system to validate the performance and e ectiveness of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FACTS Devices Allocation to Congestion Alleviation Incorporating Voltage Dependence of Loads

This paper presents a novel optimization based methodology to allocate Flexible AC Transmission Systems (FACTS) devices in an attempt to improve the previously mentioned researches in this field. Static voltage stability enhancement, voltage profile improvement, line congestion alleviation, and FACTS devices investment cost reduction, have been considered, simultaneously, as objective funct...

متن کامل

Congestion Management through Optimal Allocation of FACTS Devices Using DigSILENT-Based DPSO Algorithm- A Real Case Study

Flexible AC Transmission Systems (FACTS) devices have shown satisfactory performance in alleviating the problems of electrical transmission systems. Optimal FACTS allocation problem, which includes finding optimal type and location of these devices, have been widely studied by researchers for improving variety of power system technical parameters. In this paper, a DIgSILENT-based Discrete Parti...

متن کامل

An Efficiency Measurement and Benchmarking Model Based on Tobit Regression, GANN-DEA and PSOGA

The purpose of this study is designing a model based on Tobit regression, DEA, Artificial Neural Network, Genetic Algorithm and Particle Swarm Optimization to evaluate the efficiency and also benchmarking the efficient and inefficient units. This model has three stages, and it uses the data envelopment analysis combined model with neural network, optimized by genetic algorithm, to evaluate the ...

متن کامل

FACTS Devices Allocation Using a Novel Dedicated Improved PSO for Optimal Operation of Power System

Flexible AC Transmission Systems (FACTS) controllers with its ability to directly control the power flow can offer great opportunities in modern power system, allowing better and safer operation of transmission network. In this paper, in order to find type, size and location of FACTS devices in a power system a Dedicated Improved Particle Swarm Optimization (DIPSO) algorithm is developed for de...

متن کامل

Multi-objective Measurement Devices Allocation Using State Estimation in Distribution System

Allocation of measurement devices is a necessity of distribution system which is an application of state estimation. In this paper, the problem of active and reactive measurement devices is modeling using a multi-objective method. The objectives of the problem are to minimize the use of measurement devices, increase in state estimation output, improve the state estimation quality and reduce cos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008